

MATHEMATICS HIGHER LEVEL PAPER 3 – DISCRETE MATHEMATICS

Monday 7 May 2012 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL information booklet* is required for this paper.
- The maximum mark for this examination paper is [60 marks].

M12/5/MATHL/HP3/ENG/TZ0/DM

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Maximum mark: 15]

- (a) Use the Euclidean algorithm to express gcd(123, 2347) in the form 123p + 2347q, where $p, q \in \mathbb{Z}$. [8 marks]
- (b) Find the least positive solution of $123x \equiv 1 \pmod{2347}$. [3 marks]
- (c) Find the general solution of $123z \equiv 5 \pmod{2347}$. [3 marks]
- (d) State the solution set of $123y \equiv 1 \pmod{2346}$. [1 mark]

2. [Maximum mark: 7]

The cost adjacency matrix for the weighted graph K is given below.

	Α	В	С	D	Е	F	G
A	0	5	2	0	0	0	0
В	5	0	0	0	7	0	0
C	2	0	0	4	4	0	0
D	0	0	4	0	2	0	9
Е	0	7	4	2	0	4	3
F	0	0	0	0	4	0	1
G	0	0	0	9	3	1	0

Use Prim's algorithm, starting at G, to draw two distinct minimal weight spanning trees for K.

3. [Maximum mark: 8]

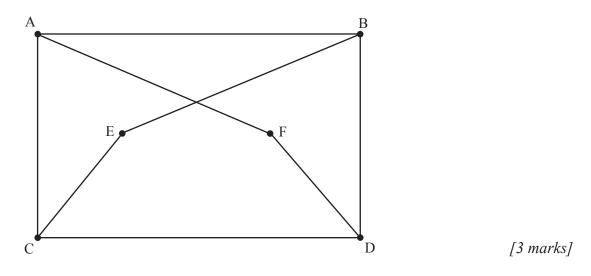
The graph G has adjacency matrix M given below.

	А	В	С	D	Е	F
А	(0	1	0	0	0	1)
В	1	0	1	0	1	0
C	0	1	0	1	0	0
D	0	0	1	0	1	0
E	0	1	0	1	0	1
F	1	0	0	0	1	F 1 0 0 0 1 0

(a)	Draw the graph G .	[2 marks]
(b)	What information about G is contained in the diagonal elements of M^2 ?	[1 mark]
(c)	Find the number of walks of length 4 starting at A and ending at C.	[2 marks]
(d)	List the trails of length 4 starting at A and ending at C.	[3 marks]

4. [Maximum mark: 17]

(a) Draw the complement of the following graph as a planar graph.



(This question continues on the following page)

https://xtremepape.rs/

(Question 4 continued)

(b) A simple graph G has v vertices and e edges. The complement G' of G has e' edges.

(i) Prove that
$$e \le \frac{1}{2}v(v-1)$$
.

- (ii) Find an expression for e+e' in terms of v.
- (iii) Given that G' is isomorphic to G, prove that v is of the form 4n or 4n+1 for $n \in \mathbb{Z}^+$.
- (iv) Prove that there is a unique simple graph with 4 vertices which is isomorphic to its complement.
- (v) Prove that if $v \ge 11$, then G and G' cannot both be planar. [14 marks]

5. [Maximum mark: 13]

- (a) Use the result $2003 = 6 \times 333 + 5$ and Fermat's little theorem to show that $2^{2003} \equiv 4 \pmod{7}$. [3 marks]
- (b) Find $2^{2003} \pmod{11}$ and $2^{2003} \pmod{13}$. [3 marks]
- (c) Use the Chinese remainder theorem, or otherwise, to evaluate 2^{2003} (mod1001), noting that $1001 = 7 \times 11 \times 13$. [7 marks]